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Transpose of a matrix
-

e The transpose of a matrix A that is obtained
when the rows and columns of matrix are

Interchanged :
~ N / 4
A=|1 2 3| then 47 = 2 3
4 5 6
- B 3 6




Algorithm of determinant computation

e Let matrix A be defined as the square matrix
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Ans: det A =9, det B =-18
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e Compute det A and det B given that
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Minors and Cofactors
«__ 7

e Remove the elements of its ith row, and jth
column, the determinant of the remaining
determinant of the remaining n-square matrix
Is called the minor of determinant A, denoted

asS [Mlj]
e The signed minor « ; Is called the cofactor of
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Determinant of a matrix of order 4 or higher

e A fourth-order determinant can first be expressed as
the sum of the products of the elements of its first

row by its cofactor
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Ex.2 Compute the value of the determinant

2] 0 -3

R Y
4 0 3 -2

3 0 0 I

Download the source code;

Ans: det A = -33 Determinant.cpp




Cramer’s Rule
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e Cramer’s rule states that the unknowns X, y, and z
can be found from the relations
D, D,
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Ex.3

Use Cramer’s rule to find v1, v2 and v3, If
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A
D
Xz = 2



Adjoint of a Matrix

e the adjoint of square matrix A, and ¢ 1] IS IS
the cofactor of aij, is defined
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Example of Adjoint of a Matrix
c ] 7 2 3
e Compute adjA giventhat 4 = 1|7 3 4
1 4 3
3 o4 (2 3] |2 3
4 3 4 3 3 4 ) )
- - - - - —7 6 -1
adjid = |_|1 4 L3 17 =11 0 -1
1 3 1 3] 3 4 PN
1 3| |1 2 /1 2
4 1 4] 1 3]




Inverse of a Matrix
«_«__ 00077

If and B are square matrices such that A5=84=1,
where / is the identity matrix, B is called the
iInverse of A. denoted as B=A"1 and likewise,
A=B-1, |

/

A4 =
detA

adjA



Ex.4

Find A1 given that
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